Verification of UML Dynamic Specifications using Simulation-based Timing Analysis

[image: image1.png]magnet | REED_SWITCH

maghet

commEnableColl

commEnableColl

COIL DRIVER

rogramming

programming

commEnable G
‘commEnable_G

COMMUNICATION_ GNOME

commChamber

coilComm commChamber_V

Jeommehamber

ATRIAL_MODEL VENTRICULAR MODEL

atrialVentricular B—sb atrailVentricular

heart

[image: image2.emf]UML

Simulation

Environment

Simulation

Settings

(Timers, etc.)

Simulation

Logs

Log Analysis

Tool

Timing

Diagram

Inspection

UML

Model

Analyst

•ObjecTime tool

•Rose Real Time tool

•Text File

•MS Excel

•Processing

Macro

•Formatted

Excel charts

•Viewing

Macro

Keywords: Timing Analysis, Verification and Validation, and the Unified Modeling Language.

Abstract

The Unified Modeling Language (UML) is the result of the unification process of earlier object oriented models and notations. Independent verification and validation (IV&V) tasks, as applied to UML specifications, enable early detection of analysis and design flaws prior to implementation.

In this paper, we address an important IV&V task that we perform on UML models, which is timing analysis of UML dynamic specifications. We discuss an approach for automatic generation of timing diagrams from the simulation logs obtained from simulating UML specifications. We develop four timing analysis methods, namely; concurrency-based, environmental-interactions, timeouts-based, and performance-based timing analysis methods. We show results from applying the proposed timing analysis methods to an illustrative example, a pacemaker specification.
1. Introduction

Unified Modeling Language is becoming a widely accepted industrial standard for modeling software systems. The software development industry is bracing this modeling language for requirement analysis and the subsequent phases of software development lifecycle. As a result, Independent Verification and Validation (IV&V) teams need to devise methods for evaluating UML artifacts supplied by the developer teams. At present mostly manual methods are being used to perform analysis of UML models. Given the size and complexity of the large software systems, the manual efforts are time-consuming, tedious and error prone.

IV&V teams being much smaller than development teams must use efficient techniques to perform their analysis. IV&V analysis can be categorized as static or dynamic. Static analysis helps IV&V teams in reviewing the structure of UML models and generating metrics such as class size, the size of hierarchy, and complexity measures. The complex dynamic behavior of many applications, especially real-time applications, motivates a shift in interest from traditional static analysis to dynamic analysis. Dynamic analysis is performed to analyze the behavior of objects as expected at run time.

In this paper, we discuss timing analysis as an important IV&V task for real-time systems. Temporal IV&V, timing analysis, and timing diagrams are not part of UML v1.3 specifications, however, it is necessary to verify and validate timing constraints and to study the dynamic aspects of UML models.

Although UML is a rich analysis and design modeling language, it does not define how to study the dynamic aspects of the models through simulation; a capability that is required to monitor the expected run-time behavior of software systems. The Real-Time Object Oriented Modeling (ROOM) [5] is introduced to study the dynamic aspects of applications modeled as concurrently executing objects with complex dynamic behavior. ROOM models are intended for simulating the application execution scenarios and complex object behavior. Dynamic analysis can be conducted on executable OO design models such as ROOM models, and hence the dynamic behavior of applications can be verified and assessed. Executable design models are used to simulate real time applications and deduce their real-time properties such as deadlines and scheduling. The same models can be used to analyze timing constraints prior to detailed implementation.

Verification can be conducted at various development phases. Early verification of software specification and analysis artifacts is encouraged before large investment is made in development. We perceive that verification and validation of UML specifications can be done at an early development phase - prior to implementation - using scenarios and simulation models. To serve the dynamic simulation and verification process of UML models, Rational Software (www.rational.com), the originator of UML, is collaborating with ObjecTime Limited (www.ObjecTime.com), the originator of ROOM, on the definition of UML for Real-Time [2]; an application of UML optimized for real-time embedded software development. As a result of this initiative, UML models and ROOM models are integrated in one modeling and simulation environment [4]. For this paper, we are interested in verification and validation of UML specifications through simulation of UML models using simulation tool-support [4, 3].
In this paper, we define four timing analysis methods that we can perform to verify and validate UML timing specifications. We also describe the procedure to perform the proposed timing analysis methods on UML artifacts. We automated the generation of timing diagrams from the log files produced from simulating UML specifications. We applied the timing analysis techniques that we developed to a pacemaker example. We found some timing problems in the UML models of the pacemaker and we documented the results.

Section 2 discussed the proposed timing analysis approach and methods. In section 3, we show some results from applying the proposed approach to the pacemaker example. Finally we conclude the paper and discuss future research agenda in section 4.

2. The Timing Analysis Approach

The approach that we take is to simulate UML specifications. Based on simulation logs, we develop analysis methods and techniques to perform verification of timing constraints.

2.1 The Proposed Approach

The following figure describes the overall approach that we propose for timing analysis of UML specifications.

[image: image3.emf]Graph Start: 7000 Graph End:8500 X axis label Step: 20

Graph Name: Concurrency based analysis. All messages between the Atrial and the Ventricular models are delayed by 10 epochs

Series 1:

heHeart

Series 2:

VENTRICULAR_MODEL

Series 3:

ATRIAL_MODEL

Comments:

Pacing

Waiting

Refracting

Pacing

Waiting

Refracting

Pulse

Waiting

Time in epochs

In case of more than one unsensed consecutive heart beets, the next heart beet overlaps with the generated paces that as well, in case of

delays 50 epochs or above, are less than the corresponding unsensed beets in number. In analyzing the message exchange on the sequence

diagrams versus the timing diagram, it is noticed that the refractory time for the Atrial is increased by at least 20 epochs and the Pacing is

delayed from expected by 10 epochs, thus the waiting state starts delayed by at least 30 epochs. As well Queuing of messages occurs for

delays larger than 20 epochs.

0

1

2

3

4

5

6

7

8

9

10

11

12

700070347068710271367170720472387272730673407374740874427476751075447578761276467680771477487782781678507884791879527986802080548088812281568190822482588292832683608394842884628496

Heart

Ventrical

Atrial

Figure 1 A high level view of the proposed timing analysis approach

The IV&V task is to verify timing constraints in a UML model for a specific application. The analyst adjusts simulation settings for a particular scenario and simulates the UML model in a given simulation environment to produce simulation logs for that particular scenario. We developed a log analysis tool that processes the log file and produces timing diagrams. Through inspection of timing diagrams, the analyst determines if there is any violation in a particular timing constraint. As an example:

· we used ObjecTime tool [3] as the simulation environment,

· the log file is a text file containing all objects, state changes, and the simulation time of any state change,

· the log analysis tool is Microsoft Excel and a Visual Basic Macro that we developed,

· the state diagrams are charts showing each object as a series of changing states in time.

2.2 Automatic generation of Timing Diagrams

First, we generate a log file from simulating the UML model for specific execution scenario. We use MS Excel to recognize the textual log file. We developed two Visual Basic macros within MS Excel environment. First, the processing macro, which recognizes all executed objects and all their involved states, generates numeric distinct codes for all involved states in each object, adjusts values to enforce continuos vertical and horizontal line representation of state changes, configures x-axis as time series of epochs, y-axis as state codes, and each object as a series, and automatically generates Excel chart for each simulation run. The second macro is the viewing macro, which enables the analyst to zoom in and out of the timing diagram.

2.3 Timing Analysis Methods

Using the previous automated generation of timing diagrams, the analyst can inspect the timing diagrams to verify that timing constraints are met. Moreover, the analyst can deploy several timing analysis methods to study the effect of delays in transmission or processing of messages. The following figure summarizes four timing analysis methods that we developed to verify UML specifications. We discuss each of the proposed methods using a Focus/Purpose/Method template.

Timing Analysis Method
Focus
Purpose

Concurrency-based
Links between objects (components)
Study the effect of delays of delivering messages between objects

Performance-based
Objects (components)
Study the effect of implementation efficiency

Timeouts-based
Objects (components)
Study effect of various timeout values.

Environment-Interactions
External Environment
Study effect of delays in recognizing hardware events

Figure 2 Timing Analysis Methods

2.3.1 Concurrency-based Timing Analysis:

Focus: Architecture connectors (links between objects)

Purpose: Analyze the effect of delays in delivering messages from one component (object) to another.

Method:

· Augment the model with delays over connectors involved in each scenario.

· Generate timing diagrams for each simulation run.

· Inspect timing diagrams to study the effects of these delays on model behavior and required deadlines.

2.3.2 Performance-based Timing Analysis

Focus: Architecture components (objects)

Purpose: Analyze the effect of inefficient implementation of state activities and actions.

Method:

· Augment the model with delays in the execution of entry, exit, and activity code segments of all states involved in each scenario.

· Generate timing diagrams for each simulation run.

· Inspect timing diagrams to study the effect of these delays on model behavior and required deadlines.

2.3.3 Timeouts-based Timing Analysis

Focus: Architecture components (objects)

Purpose: Analyze the effect of timeout values of all user defined timers in the model.

Method:

· Vary the values of timers used in each scenario.

· Generate timing diagrams for each simulation run.

· Inspect timing diagrams to study the effect of these variations on model behavior and required deadlines.

2.3.4 Environmental-Interactions Timing Analysis

Focus: Interactions with the environment including hardware devices and sensors.

Purpose: Analyze the effect of delay in sensing environmental events, caused by external systems and/or event recognition software (outside system boundaries).

Method:

· Augment the model with delays in sensing hardware events.

· Produce timing diagrams for each simulation run.

· Inspect timing diagrams to study the effect of these delays on model behavior and required deadlines.

3. An Example: A Pacemaker

We have selected a case study of a pacemaker device [1, pp177] to discuss the applicability of the proposed timing analysis methods. The pacemaker is a critical real-time application. An error in the software operation of the device can cause loss of the patient’s life. Therefore, it is necessary to model its design in an executable form to validate the timing and deadline constraints. We have used ObjecTime simulation environment [3] and ROOM models [5] to model and gather simulation statistics.

A cardiac pacemaker is an implanted device that assists cardiac functions when the underlying pathologies make the intrinsic heartbeats low. The pacemaker runs in either a programming mode or in one of operational modes. During programming, the programmer specifies the type of the operation mode in which the device will work. The operation mode depends on whether the Atrium (A), Ventricle (V), or both are being monitored or paced. The programmer also specifies whether the pacing is inhibit(I), triggered(T), or dual(D). For the purpose of this paper, we limit our discussion to the AVI operation mode. In this mode, the Atrial portion (A) of the heart is paced (shocked), the Ventricular portion (V) of the heart is sensed (monitored), and the Atrial is only paced when a Ventricular sense does not occur; i.e., inhibited (I). Figure 3 shows the pacemaker design model using a ROOM actor diagram. The pacemaker consists of the following actors (objects or components):

Reed_Switch (RS): A magnetically activated switch that must be closed before programming the device. The switch is used to avoid accidental programming by electric noise.

Coil_Driver (CD): Receives/sends pulses from/to the device programmer. These pulses are counted and then interpreted as a bit of value zero or one. These bits are then grouped into bytes and sent to the communication gnome. Positive and negative acknowledgments as well as programming bits are sent back to the programmer.

Figure 3 Actor diagram for the pacemaker example
Communication_Gnome (CG): Receives bytes from the coil driver, verifies these bytes as commands, and sends the commands to the Ventricular and Atrial models.

Ventricular_Model (VT) and Atrial_Model (AR): These two actors are similar in operation. They both could pace the heart and/or sense heartbeats. The AVI mode, chosen to be simulated, is a complicated mode as it requires coordination between the Atrial and Ventricular models. Once the pacemaker is programmed the magnet is removed from the Reed_Switch. The Atrial_Model and Ventricular_Model communicate together without further intervention. Only battery decay or some medical maintenance reasons force reprogramming.

The behavior of each of the actors (objects) is modeled by a statechart which are not shown here for space limitations.

As mentioned earlier, a pacemaker can be programmed to operate in one of several modes depending on which part of the heart is to be sensed and which part is to be paced. The analysis of the device operation defines several scenarios. We only used the AVI_Operation scenario for timing analysis purposes. In this scenario, the Ventricular_Model monitors the heart. When a heart beat is not sensed, the Artial_Model paces the heart and a refractory period is then in effect.

As an example of applying the proposed timing analysis approach to the pacemaker, we consider an example from concurrency-based timing analysis (results shown in figure 4):

Focus: We insert a delay on the link between the Atrial and Ventricular components (10 epochs is shown)

Result: In case of more than one unsensed consecutive heart beats, the next heart beat overlaps with the generated paces.

Reason: Due to message delay, the refractory time for the Atrial increased by at least 20 epochs and the Pacing is delayed from expected by 10 epochs, thus the start of the waiting state was delayed by at least 30 epochs.

Note: We observed that queuing of messages occurs for delays larger than 20 epochs.

Figure 4 A timing diagram for the AVI scenario generated from the processing tool for the case of 10 epoch delay over the link between the Atrial and Ventrical components.

4. Conclusion and Future Work

In this paper, we automated the process of generating timing diagrams from simulation log file, we proposed a simulation based temporal IV&V methodology, and we defined four timing analysis methods.

As part of the future work, we plan to:

· Investigate techniques to automatically check the violation of constraints/rules from simulating UML models. We perceive that we can develop an observer component that runs within the simulation environment, monitors variables, controls sub simulations runs, and checks for violations of timing constraints.

· Develop a technique to select scenarios, components, and connectors to which we apply the proposed timing analysis approach.

5. References

[1] B. Douglass, "Real-Time UML : Developing Efficient Objects for Embedded Systems", Addison-Wesley, 1998

[2] A. Lyons. UML for Real-Time Overview. ObjecTime, Ltd.,White Paper, http://www.ObjecTime.com/otl/technical/

[3] ObjecTime User Guide. ObjecTime Ltd., Kanata, Ontario, Canada, 1998.

[4] Rational, Inc. Rational Rose RealTime. http://www.rational.com/products/rosert/ index.jtmpl

[5] B. Selic, B., G. Gullekson, and P. Ward, “Real-Time Object Oriented Modeling”, John Wiley & Sons, Inc. 1994

Khalid Lateef

Averstar Inc.,

NASA IV&V Facility

100-University Drive, Fairmont, WV 26554

Khalid.Lateef@ivv.nasa.gov

Sherif M. Yacoub, Alaa Ibrahim, and Hany H. Ammar

Dept. of Computer Science and Electrical Engineering,

West Virginia University

Morgantown, WV26506-6109

{yacoub, ibrahim, ammar}@csee.wvu.edu

5

